The 5 Pillars of Good Solution Architecture: Designing for Efficiency

Designing for Efficiency

Sergio Barbosa (CIO, Global Kinetic)


The wave of cloud computing that hit the tech industry during the first decade of the century brought about the promise of reduced infrastructure costs with on-demand infrastructure utilization.  In layman’s terms you only paid for the infrastructure that you used for the time that you used it.  No longer did you have to purchase a powerful expensive server upfront that was able to handle your system’s peak workloads, and then have it sit idle for most of the time until it was needed.  With cloud computing the promise was that you could run your maximum workloads on powerful servers for the one or two hours that you needed it, and then scale that down to a small server for the rest of the time, drastically reducing your infrastructure costs.

That was easier said than done.  We quickly discovered that for this to be achieved you would need to have system diagnostics to know when you needed the big server and when you needed the small one, and for how long.  That means you needed to build this monitoring into your system from the onset so that the system can give you the diagnostics you need to make infrastructure decisions.  But not all systems are that predictable.  There are four basic models, and a single system can have a combination of these models if it is a more modern and modular or microservices-based system.

The microservices that power the finance department of a company for example might have very specific predictable demand at month end when payments are made and reconciliation processes are run, whereas the microservices that power the onboarding of new customers may have an unpredictable demand as some external forces could drive demand for new customer sign ups that weren’t previously anticipated.

Some systems may have a requirement for an on-premise component for whatever reason, and hybrid infrastructure architectures are very common.  It is important to ensure that your on-premise infrastructure does not become a bottleneck for your elastic cloud infrastructure in hybrid scenarios.

A good way to approach cost efficiencies for a system is to organize the infrastructure being utilized.  In most cloud environments you can make use of subscriptions, resource groups and tags to assign resources to different cost centres within a large enterprise.  Organizing system resources like this will help you optimize the spend.  Optimizations can be done at an IaaS (Infrastructure as a Service) level with compute and storage provisioning, or at a PaaS (Platform as a Service) level with database, blob and orchestration services like Kubernetes provided on demand by most cloud providers.

As mentioned before, key to understanding where you can optimize a system and make it more efficient from a cost and/or utilization perspective (we all want to save the planet right?), is through monitoring.  The formula is simple; Monitoring + Analytics = Insights.  Core system monitoring involves four specific things:

Now that you have your monitoring in place, you can start working on automation.  Automation can add incredible efficiencies to operations.  There are three main areas of automation that you can focus your energies on:

Designing for efficiency up front can add immense costs savings to your solution in the long run.  Building the metrics, diagnostics, health checks, automated tests and IaC to an existing code base is a near impossible task and the costs will undoubtedly outweigh the benefits.  Build these in upfront and reap the rewards.  Continue monitoring your system over time as system usage evolves and changes.  This way you will always can improve the efficiency of operations in the systems that you build.

If you missed any earlier parts from our series on the 5 Pillars of Good Solution Architecture, click here to read more.